COŞEL | Basic Characteristics Data

Basic Characteristics Data

Madal	Circuit mothed	Circuit method frequency ourrent ourrent		PCB/Pattern			Series/Parallel operation availability		
Iviodei	Circuit method	[kHz]	*1 [A]	protection	Material	Single sided	Double sided	Series operation	Parallel operation
CHASODE	boost chopper	60 - 220	2.2 Thermister		ED_/		Vac	Vac	No
GHASUUF	LLC resonant converters	90 - 180	3.3	THEITHSLOI	1 11-4		165	165	NU
GHA500F	boost chopper	60 - 220	5.4	Thermistor	Aluminum/FR-4	Yes	Yes	Yes	*2
	LLC resonant converters	90 - 180							
GHA500F-SNF	boost chopper	60 - 220	E A	Thermistor	ermistor Aluminum/FR-4	Yes	Yes	Yes	*2
	LLC resonant converters	90 - 180	J.4						

*1 The value of input current is at ACIN 120V and rated load.

*2 Parallel operation is available with –P option. Refer to 5.1on the instruction manual.

1] F	unction	GHA-10
	1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8	Input voltage range Inrush current limiting Overcurrent protection Overvoltage protection Thermal protection Output voltage adjustment range Output ripple and ripple noise Isolation	GHA-10 GHA-10 GHA-10 GHA-10 GHA-10 GHA-10 GHA-11
2	S	eries Operation and Parallel Operation	GHA-11
	2.1 2.2	Series Operation Parallel Operation	GHA-11 GHA-11
3] A	ssembling and Installation Method	GHA-11
	3.1 3.2 3.3 3.4 3.5	Heat dissipation (derating) Installation method Mounting screw Expectancy life and warranty Extermal capcitor on the output side	GHA-12 GHA-13 GHA-14 GHA-14 GHA-14
4] G	round	GHA-14
5] 0	ption and Others	GHA-15
	5.1 5.2 5.3	Outline of options Medical Isolation Grade Others	GHA-15 GHA-17 GHA-17

GHA

1 Function

COSEL

1.1 Input voltage range

- The range is from AC85V to AC264V or DC130V to DC370V (please see SPECIFICATIONS for details).
- In cases that conform with safety standard, input voltage range is AC100-AC240V (50/60Hz).
 - (a) Recommended Capacity : 6.3A, slow -blow

Fig.1.1 Connection method

- If input value doesn't fall within above range, a unit may not operate in accordance with speci cations and/or start hunting or fail.
 If you need to apply a square waveform input voltage, which is commonly used in UPS and inverters, please contact us.
- When the input voltage changes suddenly, the output voltage accuracy might exceed the speci cation. Please contact us.

1.2 Inrush current limiting

An inrush current limiting circuit is built-in.

- If you need to use a switch on the input side, please select one that can withstand an input inrush current.
- ■Thermistor is used in the inrush current limiting circuit. When you turn the power ON/OFF repeatedly within a short period of time, please have enough intervals so that a power supply cools down before being turned on.
- Surge current in the Iter unit does not include. (0.2ms or less).

1.3 Overcurrent protection

An overcurrent protection circuit is built-in and activated at 105% of the rated current or 101% of the peak current. A unit automatically recovers when a fault condition is removed.

Please do not use a unit in short circuit and/or under an overcurrent condition.

Intermittent Operation Mode

Intermittent operation for overcurrent protection is included in a part of series. When the overcurrent protection circuit is activated and the output voltage drops to a certain extent, the output becomes intermittent so that the average current will also decrease.

1.4 Overvoltage protection

GHA

An overvoltage protection circuit is built-in. If the overvoltage protection circuit is activated, shut down the input voltage, wait more than 3 minutes and turn on the AC input again to recover the output voltage. Recovery time varies depending on such factors as input voltage value at the time of the operation.

Remarks :

Please avoid applying a voltage exceeding the rated voltage to an output terminal. Doing so may cause a power supply to malfunction or fail. If you cannot avoid doing so, for example, if you need to operate a motor, etc., please install an external diode on the output terminal to protect the unit.

1.5 Thermal protection

Over Temperature Protection (OTP) is built in.

- If this function is in operation, turn off power, eliminate all possible causes of overheating, and drop the temperature to nomal level.
 - Output voltage recovers after applying input voltage.

The recovery time varies depending on input voltage and load condition.

- $\textcircled{1}\ensuremath{\text{Over}}$ rated temperature
- 2Poor ventilation

③Over peak load based on Instruction Manual 4. for Peak loading

Remarks :

Please comply with recommended mounting method in section 3.1.

1.6 Output voltage adjustment range

To increase an output voltage, turn a built-in potentiometeris clockwise. To decrease the output voltage, turn it counterclockwise

1.7 Output ripple and ripple noise

Output ripple noise may be in uenced by measurement environment, measuring method Fig.1.2 is recommended.

C1: Film capacitor 0.1µF

C2: Aluminum electrolytic capacitor 22µF

Fig.1.2 Measuring method of Ripple and Ripple Noise

Remarks :

When GND cable of probe with ux of magnetic force from power supply are crossing, ripple and ripple noise might not measure correctly.

Please note the measuring environment.

Fig.1.3 Example of measuring output ripple and ripple noise

1.8 Isolation

COSEL

- ■For a receiving inspection, such as Hi-Pot test, gradually increase (decrease) the voltage for the start (shut down). Avoid using Hi-Pot tester with the timer because it may generate voltage a few times higher than the applied voltage, at ON/OFF of a timer.
- When you test a unit for isolation between the input and output, input and the terminal FG or between the output and the terminal FG, short-circuit between the output and the terminals RCG, PGG and AUXG.

2 Series Operation and Parallel Operation

2.1 Series Operation

Series operation is available by connecting the outputs of two or more power supplies with the same output voltage, as shown below. Output current in series connection should be lower than the lowest rated current in each unit.

Remarks :

Please be sure to have enough cooling in case one of the power supply stops due to activation of the protection circuitry.

Fig.2.1 Examples of connecting in series operation

2.2 Parallel Operation

Parallel operation

Parallel operation is possible with option "-P".

Parallel operation is not available for the standard unit, please refer to the listed options.

Redundancy operation

Redundancy operation is available by wiring as shown below.

Fig.2.2 Example of redundancy operation

Even a slight difference in output voltage can affect the balance between the values of I₁ and I₂.

Please make sure that the value of I₃ does not exceed the rated current of a power supply.

 $I_3 \leqq$ the rated current value

Please evaluate carefuly and test for any possible failure modes. Hot-swap or Hot-plug is not available.

3 Assembling and Installation Method

Features of the cooling method

GHA500F

Cooling method

Conduction cooling, forced air and convection cooling are available.

The combination of the cooling method makes mechanical design exible.

Fig.3.1 Cooling method Combination

In order to determine if the power supply operates according to our speci cations, the maximum operating temperature and temperature measuring points are shown in table 3.1., for reference.

CO\$EL

GHA300F

Cooling method

Both Forced air and convection cooling are available. (Fig 3.1 1),3),6)cooling method).

Remarks:

For proper operation of the power supply, please note the following: ()Heat dissipation (derating):Section 3.1 reference

- The temperature rise and heat dissipation of the converter must be considered.
- · Conditions varies with environment and input voltage.
- Mounting surface will be very hot during the operation ,so please be careful not to touch the surface.

②Insulation distance: Please refer to Section 3.2

- · AC voltage exist on the primary side therefore.
- In order to prevent electric shock, or to meet the leakage current requirements of the safety standard, you need to ensure the proper insolation distance.

3.1 Heat dissipation (derating)

Given the potential for variation between one application and another, the real test is to measure the critical components temperature rise when the power supply installed in the end-application.

For reliable and safe operation, please make sure the maximum component temperatures rise given in table 3.1 is not exceeded.

Please refer to Fig.3.4 - 3.9 for derating information based on different cooling methods.

Operating at the maximum temperature rating results in 3-Years life expectancy. The actual life expectancy can be extended by reducing the ambient temperature. Please refer to section 3.4 for more information.

Test Measuring points

Be aware of the conductive parts during the measurements. Please contact us for more detail.

(b)Lower substrate

(a)Upper substrate

Fig.3.2 Temperature measurement points locations

Table 3.1 Maximum operating temperature

Point	Parts name	Symbol	Maximum temperature[℃]		Remarks	
		NO.	500F	300F		
1	Line Filter	L101	115	115		
2	Varistor	SK101	76	76		
3	Input Capacitor	C106	89	89		
4	Output Capacitor	C506	87	87		
5	Rectifier	SS11	120	120	case temperature	
6	Transformer	T11	110	110		
1	Output Choke	L51	115	115		
8	Aluminum base plate	-	*	-		

*Operating ambient temperature derating of Conduction cooling (Reference value)

Remarks:

There is a possibility that it is not possible to cool enough when the power supply is used by the sealing up space as showing in Fig.3.3.

Fig.3.3 Installation example

GHA500F

Fig.3.4 Forced air cooling derating curve (Reference value) *Maximum power with Forced air (Fig.3.5)

Fig.3.5 The maximum output power by wind speed conditions

Fig.3.6 Convection cooling derating curve (Reference value)

GHA300F

COSEL

Fig.3.8 Forced air cooling derating curve (Reference value)

Fig.3.9 Convection cooling derating curve (Reference value)

Input voltage derating curve

Derating curve depending on input voltage is Fig.3.10. For maximum power in each cooling method, please apply.

Fig.3.10 Input voltage derating curve

3.2 Installation method

■During use, keep the distance between d₁ & d₂ for to insulate between lead of component and metal chassis, use the spacer of 5mm or more between d₁. If it is less than d₁ & d₂, insert the insulation sheet between power supply and metal chassis.

GHA500F

Fig.3.12 Installation method

3.3 Mounting screw

COSEL

The mounting screw should be M3. The hatched area shows the allowance of metal parts for mounting.

GHA300F, GHA500F

Fig.3.14 Allowance of metal for mounting

If metallic ttings are used on the component side of the board, ensure there is no contact with surface mounted components.

This product uses SMD technology.

Please avoid the PCB installation method which includes the twisting stress or the bending stress.

3.4 Expectancy life and warranty

Expectancy Life.

Cooling	Mounting	Average ambient	Expectancy Life	
Method	Method	temperature (year)	lo≦75%	75% <lo≦100%< td=""></lo≦100%<>
		Ta = 35℃ or less	10years	6years
	A, C, D	Ta = 40℃	7years	4years
0	В	Ta = 45℃	10years	7years
Convection	E	Ta = 30℃ or less	10years	7years
		Ta = 35℃	7years	5years
	F	Ta = 30℃	10years	7years
Forced air	ARCDEE	Ta = 40℃ or less	Over 10years	Over 10years
	A,D,C,D,E,F	Ta = 50℃	Over 10years	Over 10years

Table 3.2 Life Expectancy (GHA500F-

Table 3.3 Life Expectancy (GHA300F-

Cooling	Mounting	Average ambient	Expecta	ncy Life
Method	Method	temperature (year)	lo≦75%	75% <lo≦100%< td=""></lo≦100%<>
	А	Ta = 30℃	Over 10years	Over 10years
Convection	B, C	Ta = 45℃	Over 10years	7years
	D	Ta = 45℃	Over 10years	Over 10years
	E	Ta = 40℃ or less	Over 10years	7years
		Ta = 45℃	Over 10years	6years
Forced air	A,B,C,D,E,F	Ta = 40℃ or less	Over 10years	Over 10years
		Ta = 50℃	Over 10years	Over 10years

Remarks:

Estimated life expectancy can be calculated by point temperature (3), (4) shown in section 3.1. Please contact us for details.

GHA

■Warranty

Table 3.4 Warranty (GHA500F-□)				
Cooling	Mounting	Average ambient	Warı	ranty
Method	Method	temperature (year)	lo≦75%	75% <lo≦100%< td=""></lo≦100%<>
		Ta = 35℃ or less	5years	5years
	A, C, D	Ta = 40℃	5years	3years
Convection	В	Ta = 45℃	5years	5years
Convection	E	Ta = 30℃ or less	5years	5years
		Ta = 35℃	5years	4years
	F	Ta = 30℃	5years	5years
Earood air	ARCDEE	Ta = 40℃ or less	5years	4years
FUICED all	A,D,U,D,E,F	Ta = 50℃	5years	3years

Table 3.5 Warranty (GHA300F-

Cooling	Mounting	Average ambient	Warı	ranty
Method	Method	temperature (year)	lo≦75%	75% <lo≦100%< td=""></lo≦100%<>
	A	Ta = 30℃	5years	5years
Convection	B, C	Ta = 45℃	5years	5years
	D	Ta = 45℃	5years	5years
	E	Ta = 40℃ or less	5years	5years
		Ta = 45℃	5years	4years
Forced air	A,B,C,D,E,F	Ta = 40℃ or less	5years	4years
		Ta = 50℃	5years	3years

^{*}Warranty with conduction cooling is three years at the highest point of the temperature measurement.

3.5 Extermal capcitor on the output side

When the load currnet changes rapidly, for output stability improvement, we recommend that you connect the capacitor to the output terminal.

Tabel 3.6	External cap	External capacity on the output recommended capacity $\left[\mu F\right]$		
		_		Recommended

	Output Voltage [V]	Recommended capacity [µF]	
GHA300F-12	10.8<1/0<13.2	2 200 to 22 000	
GHA500F-12	10.0 = 0 = 13.2	2,200 10 22,000	
GHA500F-15	13.5≦Vo≦16.5	2,200 to 10,000	
GHA300F-24	21651/05261	2 200 to 9 900	
GHA500F-24	21.0 \ge V0 \ge 20.4	3,300 10 8,800	
GHA500F-30	27.0≦Vo≦31.5	3,300 to 8,800	
GHA300F-48	43.2≦Vo<51.0	0 to 1,000	
GHA500F-48	51.0≦Vo≦52.8	0 to 120	
GHA500F-56	52.0≦Vo≦56.0	0 to 120	

Remarks:

When load current changes rapidly, some specifications may not meet the spec.

Please mount power supply after enough evaluation and comply with recommended amount of capacitor. If you exceed the rated amount of capacitor, output for power supply may be stopped or power supply may be unsteable.

4 Ground

In the case of the power installation, please be sure to connect two or more Input FG and mounting hole FG with safety ground of the chassis.

5 Option and Others

5.1 Outline of option

● –J1

Connector(s) is / are replaced to VH connectors (Mfr. J.S.T.).

● -R3, -SNF

The following features are included.

Dedicated harness. Please refer to the optional parts.

■AUX1 (12V±10% -R3 : 1.0A, -SNF : 0.5A)

- This power supply is equipped with an axuiliary low power 12V output AUX1 which is available from CN501.
- AUX has been isolated from other circuit (input, output, FG, RC, PG).
- Do not exceed the current rating, it may causes malfunction or failure of the internal circuitry.

■AUX2 (5V1A)

- Output AUX2 will be generated from CN501. AUX2 (5V±5% 1.0A) can be used to power up remote control or other circuits.
 AUX has been isolated from other circuit (input, output, FG, RC, PG).
- Do not exceed the current rating , it may causes malfunction or failure of the internal circuitry.
- When the load currnet changes rapidly, for output stability improvement, we recommend that you connect the capacitor to the output terminal.

Table 5.1 External capacitor on the recommended capacity of AUX2

Quitput Voltago	recommended capacity [µ F]
Output voltage	GHA300/500F
5V (AUX2)	330 ~ 560

Alarm

• Table 5.2, see Fig 5.1 the internal structure circuit explaining the operation of the PG alarm.

Table 5.2	Description	of the	alarm
-----------	-------------	--------	-------

	Alarm output condition	Alarm output	
	Or lowering of the rated output	Open collector method	
	voltage, output PG, PGG from	Good : Low(0-0.5V 10mA max)	
PG	terminal when you stop.	Bad : High or Open(40V 0.5mA max)	
	*Output is unstable state		
	when the overcurrent	Tr : 40\(10m A may	
	condition	Ir: 40V 10mA max	

■Remote ON/OFF

- You can operate the remote ON/OFF function by sending signals to CN501. Please see Table 5.3 for speci cations and Fig.5.2 for connecting examples.
- Remote ON/OFF circuits (RC1 and RCG) are isolated from input, output FG, AUX and PG.
- Please note the followings when using the remote ON/OFF function.
- -R3 turns on by drawing current to RC, -SNF turns off by drawing current to RC.
- (2) The current own to RC is a 5mA typ (maximum 30mA).
- (3) If the output voltage is turned off through the remote ON/OFF circuit, 12V AUX stops.
- (4) If the output voltage is turned off through the remote ON/OFF circuit, PG signals turn to "High".
- (5) If voltage or current of a value not listed in Table 5.3 is applied between RC1 and RCG, the output voltage may not be generated normally.
- (B)Please wire carefully. If you wire wrongly, the internal components of a unit may be damaged.

Table 5.3 Speci cations of remote ON/OFF

Fig.5.2 RC circuit example		–R3	-SNF
SW Logic	Output on	SW close	SW open
		(3mA min)	(0.1mA max)
	Output off	SW open	SW close
		(0.1mA max)	(3mA min)
Optional harness		H-SN-34	
		or H-SN-35	

(Example V1 : 5V R1 : 270 Ω)

Fig.5.2 RC circuit example

If the output of an external power supply is within the range of 4.5 - 12.5V, you do not need a current limiting resistor R1. If the output exceeds 12.5V, however, please connect the current limiting resistor R1.

To calculate a current limiting resistance value, please use the following equation.

R1[Ω]=
$$\frac{V1-(1.1+Ri \times 0.005)}{0.005}$$
 Ri=440[Ω]

GHA

–SNF

COSEL

Chassis and a cooling fan are added.

Oil and chemical environment may cause of power supply's malfunction or failure. Please avoid operation and storage in such environments.

Derating

It should be satis ed that derating curve depending on input voltage in Fig.3.10 and derating curve on ambient temperature in Fig.5.4. As the veri cation method, temperature of measurement point A should be rated temperature or less in Table 5.4.

Fig.5.3 Measurement point A

Magaurmont	Ambient temperature		
weasurment	50℃	70℃	
Point A	65℃ or less	78℃ or less	
i olitiki		1000010000	

Fig.5.4 Ambient temperature derating curve (Reference)

When output current more than rated, output may shut down after 5 seconds or more. Recycle the input after 3 minutes to reset the protection.

Maintenance of FAN

FAN life time expectancy (R(t)=90%) in Fig.5.5 is depended on measurement point temperature in Fig.5.6, which exhaust air temperature from FAN at input terminal side.

If load wires are generating heat, intake air temperature may become high. It may in uence to FAN exhaust temperature. It is a notice that optical wires have to be selected for the avoidance. When FAN stop or air volume decrease happen, power supply's output will be shut down.

Fig.5.5 Expected life time of FAN

Fig.5.6 Measurement of FAN exhaust temperature

■Mounting screw

Screw length into power supply should be shorter than 6mm due to keep safety isolation clearance from inside components in Fig.5.7. Please x power supply surely by screws in consideration of the weight.

A cooling FAN is built-in. Please keep 30mm or more clearance both input and output side to make enough air ventilation. Do not block off cooling FAN's air ow for stable operation.

When power supply is used where dust exist, it may cause of FAN failure. It is recommended to install a air lter to the system air ventilation duct.

● **-**T3

COSEL

■M3 threaded mounting hole is available as an option (-T3).

(a) T3 (Threaded mounting hole) (b) Standard (Through hole)

Fig.5.8 Screw mounting image

• -P

■Parallel operation is available (Recommended two).

Output wattage setting is 90% per power supply of MAX OUTPUT WATTAGE.

Remarks:

- The difference of output voltage between power supply for parallel operation should be less 0.1V.
- During parallel operation, higher voltage power supply become the master in system. Depend on voltage difference between master and slave, the master power supply may recover the system's required wattage up to 90% of MAX OUTPUT WATT-AGE.

The master unit should be evaluated for heat dissipation, life expectancy and warranty period according to section 3.1 - 3.4.

• Parallel operation, due to the uctuation of load, the output voltage may be varied.

There is a possibility that beat noise occurs due to the difference of the oscillation frequency. Please use after enough evaluation.

- · Forced air cooling is required.
- · Input voltage ought be AC115V or more.

5.2 Medical Isolation Grade

GHA series t 2MOPP

Fig.5.9 Medical Isolation Grade

5.3 Others

High voltage exist in the power supply for a few minutes after input voltage is stopped. Please pay attention to this during the maintence.

Notes for mounting

(1)All Mounting holes should be tight and secured.

(2)Power supply should be mounted parallel to the mounting surface.(3)Avoid applying mechanical stress or shock to the power supply.

When power supply is energized or immidately after power supply stops working, power supply is still very hot, so please handle it with care.